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Abstract

This paper introduces the Weather Research and Forecasting Model with chem-
istry/Data Assimilation Research Testbed (WRF-Chem/DART) chemical transport fore-
casting/data assimilation system together with the assimilation of “compact phase
space retrievals” of satellite-derived atmospheric composition products. WRF-Chem5

is a state-of-the-art chemical transport model. DART is a flexible software environ-
ment for researching ensemble data assimilation with different assimilation and forecast
model options. DART’s primary assimilation tool is the ensemble adjustment Kalman
filter. WRF-Chem/DART is applied to the assimilation of Terra/Measurement of Pollu-
tion in the Troposphere (MOPITT) carbon monoxide (CO) trace gas retrieval profiles.10

Those CO observations are first assimilated as quasi-optimal retrievals (QORs). Our
results show that assimilation of the CO retrievals: (i) reduced WRF-Chem’s CO bias
in retrieval and state space, and (ii) improved the CO forecast skill by reducing the
Root Mean Square Error (RMSE) and increasing the Coefficient of Determination (R2).
Those CO forecast improvements were significant at the 95 % level.15

Trace gas retrieval data sets contain: (i) large amounts of data with limited information
content per observation, (ii) error covariance cross-correlations, and (iii) contributions
from the retrieval prior profile that should be removed before assimilation. Those char-
acteristics present challenges to the assimilation of retrievals. This paper addresses
those challenges by introducing the assimilation of “compact phase space retrievals”20

(CPSRs). CPSRs are obtained by preprocessing retrieval datasets with an algorithm
that: (i) compresses the retrieval data, (ii) diagonalizes the error covariance, and (iii)
removes the retrieval prior profile contribution. Most modern ensemble assimilation
algorithms can efficiently assimilate CPSRs. Our results show that assimilation of MO-
PITT CO CPSRs reduced the number of observations (and assimilation computation25

costs) by ∼35 % while providing CO forecast improvements comparable to or better
than with the assimilation of MOPITT CO QORs.
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1 Introduction

There is increased international interest in chemical weather forecasting (Kukkonen et
al., 2012; MACC-II Final Report). Such forecasts rely on coupled forecast model/data
assimilation systems that ingest a combination of remotely sensed and in situ atmo-
spheric composition observations together with conventional meteorological observa-5

tions. Generally the remotely sensed observations come in the form of trace gas re-
trievals. Examples include carbon monoxide (CO) total and partial column or profile
retrievals from the Terra/Measurement of Pollution in the Troposphere (MOPITT) and
Metop/Infrared Atmospheric Sounding Interferometer (IASI) instruments. The associ-
ated data sets are characterized by large numbers of observations with limited infor-10

mation per observation. Such remotely sensed data has been assimilated in various
settings (e.g. Bei et al., 2008; Herron-Thorpe et al., 2012; Klonecki et al., 2012; and
Gaubert et al., 2014), but there have been only a few papers addressing data com-
pression strategies. Two such papers were Joiner and Da Silva (1998) and Migliorini
et al. (2008). This research is inspired by their research and introduces an efficient15

assimilation strategy that reduces the number of MOPITT CO retrieval observations
by ∼35 %. Greater reductions are possible, for example with IASI CO and ozone (O3)
retrievals, and depend on the number of: (i) levels in the retrieval profile and (ii) linearly
independent pieces of information in the retrieval profile.

Joiner and Da Silva (1998) first proposed the idea of using information content to20

reduce the number of retrieval observations. They suggested projecting retrievals onto
the eigenvectors of the observation error covariance matrix and zeroing those coeffi-
cients with little or no information. Their approach evolved from one-dimensional re-
trieval algorithms (e.g. Twomey, 1974; Smith and Woolf, 1976; and Thompson, 1992).

Retrievals are often obtained using the optimal estimation method of Rodgers (2000)25

to obtain solutions to the “retrieval equation”

yr = Ayt + (I−A)ya +ε (1)
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where yr is the retrieval profile, A is the averaging kernel, yt is the true atmospheric
profile (unknown), I is the identity matrix, ya is the retrieval prior profile, and ε is the
measurement error in retrieval space with error covariance Em. Joiner and Da Silva
(1998) proposed projecting Eq. (1) onto the trailing left singular vectors from the singu-
lar value decomposition (SVD) of: (i) (I−A) (their Method 1) or (ii) the smoothing error5

Es = (A− I)Pp(A− I)T where Pp is the retrieval prior error covariance (their Method 2).
Those projections removed the components of the retrieval that the instrument could
not measure with sufficient sensitivity. They called that approach “null-space filtering.”

Joiner and da Silva (1998) recognized that when the retrieval was strongly con-
strained by the retrieval prior profile the assumptions underlying null-space filter-10

ing were invalid. For such retrievals, they proposed filtering based on an eigen-
decomposition of Em (their PED retrievals). Their analysis showed that PED retrievals
were well-conditioned and independent of the retrieval prior profile.

Migliorini et al. (2008) noted that the Joiner and DaSilva (1998) filtering depended
on their truncation criteria and was therefore somewhat arbitrary. They also showed it15

was possible to achieve similar filtering results with an alternative approach that used
a more well-defined truncation criterion. Migliorini et al. (2008) rearranged Eq. (1) to
obtain

yr − (I−A)ya = Ayt +ε. (2)

Following their terminology we call the left side of Eq. (2) a “quasi-optimal” retrieval20

(QOR). Migliorini et al. (2008) noted that Em was unlikely to be diagonal and likely to
be poorly conditioned. To address those issues, they applied a SVD transform to Eq. (2)
based on the leading left singular vectors of Em (similar to that proposed by Anderson,
2003) – this step provided diagonalization of Em and used a well-determined truncation
cutoff. They also applied a scaling based on the inverse square root of the associated25

singular values – this step improved numerical conditioning.
Migliorini et al. (2008) continued to reduce the dimension of Ayt (i.e., the number

of observations) by neglecting those elements whose variability was smaller than the
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measurement error standard deviation (unity in their rotated and scaled system). They
proposed identifying those elements with an eigen-decomposition of the covariance
of Ayt. Since that covariance is generally unknown, they replaced it with the forecast
error covariance and showed that the resulting dimension was approximately equal to
the number of independent linear functions that could be measured to better than noise5

level.
In this paper, we propose an approach that achieves similar results without needing

to approximate the covariance of Ayt. Our goal is to compress the retrievals and re-
move those components that are not dependent on the measurements. In so doing we
expect to make the assimilation of retrievals more computationally efficient. The rest of10

this paper is organized as follows: Sect. 2 introduces “compact phase space retrievals,”
and Sect. 3 introduces the WRF-Chem/DART regional chemical weather forecast/data
assimilation system. Section 4 discusses our experimental design including the study
period, model domain, initial/boundary conditions, and relevant WRF-Chem/DART pa-
rameter settings. Section 5 discusses the observations that were assimilated in the15

various experiments described in Sect. 6. The results from those experiments are pre-
sented in Sect. 7, and we end with a summary of our thoughts and conclusions in
Sect. 8.

2 Assimilation of compact phase space retrievals

We can rewrite Eq. (2) as20

yr − (I−A)ya −ε = Ayt. (3)

In Eq. (3) the averaging kernel A is singular and has low rank. Therefore the information
content for each component of Ayt is relatively small, and the assimilation is inefficient
because one must assimilate the entire profile to get the same information as can
be compressed into a number of processed observations equal to the rank of A. To25

compress Eq. (3) we propose transforming it with the leading left singular vectors from
7697
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a SVD of the averaging kernel i.e., A = USVT . We denote the truncated system with
the subscript zero so that A0 = U0S0VT

0 , the truncated averaging kernel is obtained by
setting the trailing singular values and vectors to zero. The transformed system has the
form

UT
0(yr − (I−A)ya −ε) = S0VT

0yt. (4)5

Migliorini et al. (2008) showed that subtracting (I−A)ya from Eq. (3) removes all contri-
bution from the retrieval prior profile. Equations (3) and (4) confirm their result because
the leading left singular vectors of A span its range so the left side of Eq. (3) should
project completely onto UT

0 . Following that transform Em becomes UT
0EmU0 which may

still be non-diagonal and poorly conditioned. Therefore, we apply an SVD transform10

and inverse scaling similar to that used by Migliorini et al. (2008). If the SVD of UT
0EmU0

has the form UT
0EmU0 =ΦΣΨ, the transformed and conditioned form of Eq. (4) is

Σ−1/2ΦTUT
0(yr − (I−A)ya −ε) = Σ−1/2ΦTS0VT

0yt. (5)

This approach compresses Eq. (3) so that the dimension of the “compact phase space
retrieval” (CPSR) profile on the left side of Eq. (5) is identical to number of independent15

linear functions of the atmospheric profile to which the instrument is sensitive. It differs
from Migliorini et al. (2008) in that it does not require an eigen-decomposition of the
forecast error covariance and does not rely on comparison of the eigenvalues and the
rotated/scaled observation error variance to compress the system. As with Migliorini
et al. (2008) the final form of the observation error covariance is the truncated identity20

matrix.
The assimilation of CPSRs should produce results similar to the assimilation of

QORs except for: (i) the effect of assimilation sub-processes like horizontal localization
and inflation, and (ii) differences in the observation error due to the CPSR compression
transform. The QOR and CPSR observation errors are different because the compres-25

sion transform projects the errors onto the leading left singular vectors of the averaging
kernel and retains only those components that lie in the range of the averaging kernel.
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In summary the steps for obtaining CPSRs from trace-gas retrievals are as follows
(assuming the retrieval equation has the same form as Eq. 2):

– Obtain the retrieval and retrieval prior profiles, the averaging kernel, and the ob-
servation error covariance for a particular horizontal location.

– Subtract the retrieval prior term (I−A)ya from the retrieval profile yr. This yields5

the QOR as defined by Eq. (3).

– Perform a SVD of the averaging kernel. Form a transform matrix from the left
singular vectors associated with the non-zero singular values. Left multiply the
QOR by the transpose of the transform matrix. This yields the truncated QOR
profile as defined by Eq. (4).10

– Left multiply the observation error covariance by the transpose of the transform
matrix. Right multiply that matrix product by the transform matrix. This yields the
truncated observation error covariance.

– Perform a SVD of the truncated observation error covariance. Scale the left sin-
gular vectors with the inverse square root of their respective singular values. Left15

multiply the truncated QOR profile by the transpose of the scaled left singular
vector matrix. This yields the CPSR profile as defined by Eq. (5).

– As a check left multiply the truncated observation error covariance by the trans-
pose of the scaled left singular vector matrix. Right multiply that matrix product by
the scaled left singular vector matrix. The result should be an identity matrix with20

rank equal to the number of non-zero CPSRs from the previous step.

– Assimilate the non-zero CPSRs with unitary error variance.
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3 WRF-Chem/DART – a regional chemical transport/data assimilation system

The Weather Research Forecasting Model with chemistry/Data Assimilation Research
Testbed (WRF-Chem/DART) system is the WRF-Chem chemical transport model
(www2.acd.ucar.edu/wrf-chem) coupled with the DART (www.image.ucar.edu/DAReS/
DART) ensemble adjustment Kalman filter (Anderson, 2001, 2003) data assimilation5

system. WRF-Chem/DART is an extension of WRF/DART (www.cawcr.gov.au and ref-
erences therein). WRF-Chem is the National Center for Atmospheric Research (NCAR)
regional Weather Research and Forecasting (WRF) model (www.wrf-model.org) with
chemistry. WRF-Chem is a regional model that predicts conventional weather to-
gether with the emission, transport, mixing, and chemical transformation of atmo-10

spheric trace gasses and aerosols. WRF-Chem is collaboratively developed and main-
tained by the National Oceanic and Atmospheric Administration/Earth System Re-
search Laboratory (NOAA/ESRL), Pacific Northwest National Laboratory (PNNL), and
NCAR/Atmospheric Chemistry Observation and Modeling Laboratory (ACOM). WRF-
Chem is documented in Grell et al. (2004), discussed in Kukkonen et al. (2012), and15

has been applied in various research settings (e.g., Pfister et al., 2011, 2013).
DART (Anderson et al., 2009) is a community resource for ensemble data assim-

ilation (DA) research developed and maintained by the NCAR/Data Assimilation Re-
search Section (DAReS). DART is a flexible software environment for studying the in-
teraction between different assimilation methods, observation platforms, and forecast20

models. WRF-Chem and DART are state-of-the-art tools for studying the impact of
assimilating trace gas retrievals on conventional and chemical weather analyses and
forecasts.
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4 Study period, domain, initial conditions, boundary conditions, emissions,
and initial ensemble generation

We conducted continuous cycling experiments with WRF-Chem/DART for the period
of 00:00 UTC, 1 June 2008 to 00:00 UTC, 1 July 2008 with 6 h cycling (00:00 UTC,
06:00 UTC, 12:00 UTC, and 18:00 UTC). To facilitate a large number of experiments,5

we used a reduced ensemble of 20 members and a horizontal resolution of 100 km
(101×41 grid points). We used 34 vertical grid points with a model top at 10 hPa and
∼15 grid points below 500 hPa. WRF-Chem ran with the Model for Ozone and Related
Chemical Tracers (MOZART-4) chemistry and Goddard Chemistry Aerosol Radiation
and Transport (GOCART) model aerosol options (Colarco et al., 2009; Emmons et al.,10

2010). Ideally for chemical transport forecast experiments we would like an ensemble
size of at least 40 members, a horizontal resolution of no larger than 20 km, and a ver-
tical grid with at least 50 grid points. We expect our small ensemble/coarse resolution
cycling results, as they pertain to the assimilation of QORs and CPSRs, will apply to
larger ensembles with higher resolutions. However, as the vertical resolution increases,15

the sensitivity to vertical localization may increase so that tuning of the vertical local-
ization length would be necessary.

We used NCEP Global Forecast Model (GFS) 0.5◦ six-hour forecasts for the WRF-
Chem initial/boundary conditions. Our model domain extends from ∼176 to ∼50◦W
and from ∼7 to ∼54◦N. We used the WRF Preprocessing System (WPS) to interpolate20

the GFS forecasts to our domain and generate the deterministic boundary conditions.
We used the WRF Data Assimilation System (WRFDA) (http://www2.mmm.ucar.edu/
wrf/users/wrfda/Docs/user_guide_V3.7/WRFDA_Users_Guide.pdf) to generate the ini-
tial meteorology ensemble.

For the chemistry initial and lateral boundary conditions, we used global simula-25

tions from the NCAR MOZART-4 model. The fire emissions came from the Fire In-
ventory from NCAR (FINNv1; Wiedinmyer et al., 2011), and the Model of Emissions
of Gases and Aerosols from Nature (MEGAN; Guenther et al., 2012) calculated the
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biogenic emissions as part of the WRF-Chem forecast. The anthropogenic emissions
were based on the US Environmental Protection Agency’s (EPA’s) 2005 National Emis-
sions Inventory (NEI-2005). We used or adapted existing ACOM/WRF-Chem utilities
(https:www2.acd.ucar.edu/wrf-chem/wrf-chem-tools-community) to generate the initial
chemistry ensembles with a Gaussian distribution from a specified mean and standard5

deviation. That distribution was truncated at the tails to include 95 % of the distribution.
Similar utilities were used to generate the emission ensembles. We excluded the dis-
tribution tails to avoid the potential for the extreme values to cause numerical problems
in the chemistry algorithms. Although we recognize that the assimilation cycling re-
sults may be sensitive to the emission perturbation horizontal correlation lengths (e.g.10

Pagowski et al., 2012), that issue was not particularly relevant to our study so we set
the horizontal correlation lengths to zero.

5 Meteorology observations and satellite trace gas retrievals

At each cycle time, depending on the experiment we assimilated meteorology and/or
chemistry observations with DART and then advanced the analysis ensemble to the15

next cycle time with WRF-Chem. The 6 h forecast ensemble was then used as the first
guess for the next ensemble DA step.

We assimilated conventional meteorological observations and CO trace gas re-
trievals from MOPITT. The meteorological observations were NCEP Automated Data
Processing (ADP) upper air and surface observations (PREPBUFR observations).20

They included air temperature, sea level pressure, surface winds, dew point tempera-
ture, sea surface temperature, and upper level winds from various observing platforms.
We refer to those observations as the “MET OBS.”

We also assimilated MOPITT partial column/profile CO retrievals. MOPITT is an in-
strument flying on NASA’s Earth Observing System Terra spacecraft. MOPITT’s spa-25

tial resolution is 22 km at nadir, and it sees the earth in 640 km wide swaths. MOPITT
uses gas correlation spectroscopy to measure CO in a thermal-infrared (TIR) band
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near 4.7 µm and a near-infrared (NIR) band near 2.3 µm. TIR radiances are sensitive
to CO in the mid- and upper-troposphere while NIR measures the CO total column.
Worden et al. (2010) and Deeter et al. (2011, 2012, and 2013) have shown that the
sensitivity to CO in the lower troposphere is significantly greater for retrievals exploit-
ing simultaneous TIR and NIR than for retrievals based on TIR alone. MOPITT started5

data collection in March 2000. We used the MOPITT v5 TIR/NIR products described in
Deeter et al. (2013). We refer to the MOPITT observations as the “CHEM OBS.”

The retrieval error covariance Cr associated with each MOPITT CO retrieval profile
is provided as part of the data product. That error variance is derived as part of the
retrieval process based on a specified a priori error covariance Ca. Under the optimal10

estimation theory of Rodgers (2000) Cr is related to Ca through the averaging kernel
A by Cr = (I−A)Ca. The measurement error in retrieval space Cm is also related to Ca

to A by Cm = (I−A)Ca(I+ (A− I)T ). Generally for retrieval data sets Ca, Cr, and Cm are
non-diagonal.

6 Experimental design15

We conducted two basic experiments: (i) a control experiment where we assimilated
only MET OBS (MET DA); and (ii) a chemical data assimilation experiment where
we assimilated MET OBS and MOPITT CO partial column retrievals in the form of
QORs (MOP QOR). In addition we conducted an experiment where we converted the
CHEM OBS to CPSRs and assimilated the CPSRs (MOP CPSR). We also conducted20

sensitivity experiments where we: (i) zeroed the observation error covariance cross-
correlations (as opposed to using a SVD transformation for diagonalization), and (ii)
applied vertical localization. Those experiments are denoted MOP NROT and MOP
LOC respectively. The suite of experiments is summarized in Table 1.

For all experiments we used: (i) DART horizontal localization, (ii) DART prior adaptive25

inflation, (iii) no posterior inflation, (iv) full interaction between all observations and all
state variables – i.e., MET OBS update chemistry state variables and CHEM OBS up-
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date meteorology state variables (joint assimilation of MET and CHEM OBS), (v) DART
clamping on chemistry state variables to constrain the posterior ensemble members to
be positive, and (vi) the reported MOPITT retrieval error covariance as the observation
error covariance.

For the MOP QOR experiment, the MOPITT CO retrievals were converted to QORs5

using an algorithm similar to that described by Migliorini et al. (2008) except we did not
perform their second forecast error covariance based filtering.

7 Results

7.1 The control and chemical data assimilation experiments

The MET DA and MOP QOR experiments are intended to identify the impact of assim-10

ilating chemistry observations. Figure 1a shows shaded contours of CO in parts per
billion (ppb) at ∼1000 hPa from the 6 h forecast valid at 00:00 UTC, 29 June 2008 and
compares the MET DA and MOP QOR experiments. It shows that over the course of
MOP QOR the assimilation of CO retrievals reduced the: (i) positive CO bias found in
polluted areas of MET DA (i.e., metropolitan areas with high CO emissions – San Fran-15

cisco, Los Angeles, Chicago, and the northeast US), and (ii) negative CO bias found
in nonpolluted areas in MET DA (Hawaii, east Pacific, southeast US, and Baja). The
MET DA biases could result from model errors such as: (i) emission errors – CO emis-
sions too high in polluted areas and too low in nonpolluted areas, (ii) transport errors
– insufficient CO transport away from polluted areas and insufficient transport toward20

nonpolluted areas, and/or (iii) chemistry errors – CO destruction is too weak in polluted
areas and too strong in nonpolluted areas. The MET DA biases could also result from
initial/boundary conditions errors that were corrected by the assimilation of MOPITT
CO in MOP QOR.

Figure 1b shows the assimilated CO retrievals for the 18:00 UTC, 28 June 2008 up-25

date cycle in the upper panel and the corresponding increments in the lower panel.
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Comparison of those panels shows that the assimilation step adjusted the CO con-
centrations primarily along the satellite observation paths, which is a consequence of
assimilation sparse observations. The DA adjustments in Fig. 1b are generally consis-
tent with the differences between MOP QOR and MET DA in Fig. 1a (CO increases in
nonpolluted areas – east of San Francisco, the southeast US, and Baja).5

Figure 2 shows time series of the domain average CO from the MET DA and MOP
QOR experiments in retrieval and state space. The dots represent the retrieval space
results where the cool colors (blue and black) show the forecasts, and the warm col-
ors (red and magenta) show the analyses. The green dots represent the MOPITT
retrievals. The solid lines show state space results. Figure 2 has several interesting10

results. First, MET DA had a negative bias of ∼10 ppb in retrieval space. Second,
assimilation of MOPITT CO reduced that bias by ∼5 ppb. Finally, in state space MOP
QOR increased the mean CO by ∼5 ppb. Those results are consistent with Fig. 1 which
shows a large number of nonpolluted areas in MET DA with a negative bias and a small
number of polluted areas with a positive bias.15

Figure 3 shows vertical profiles of the time (00:00 UTC, 25 June 2008 to 00:00 UTC,
29 June 2008) and horizontal domain average CO in retrieval space. It shows that
the MOPITT profile had greater vertical variability (moderate CO near the surface, low
CO in the mid-troposphere (500–400 hPa), high CO in the upper troposphere (300–
200 hPa), and low CO near the tropopause (200–100 hPa)) than the MET DA and MOP20

QOR profiles. It also shows that the assimilation of MOPITT CO had positive impacts
throughout the troposphere with greatest improvement in the upper troposphere. Fig-
ure 3 shows that there were differences in the MOP QOR/MET DA bias reduction be-
tween: (i) the upper and lower troposphere (greater magnitude negative bias reduction
in the upper troposphere and lesser magnitude positive bias reduction in the lower tro-25

posphere), and (ii) the forecast and the analysis (greater bias reduction in the analysis
than in the forecast). Those results expand our understanding of the bias in Figs. 1
and 2. In Fig. 3 the forecast and analysis show greater bias reduction in the upper tro-
posphere. That suggests that the domain averages in Fig. 2 were dominated by bias
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reductions in the upper troposphere. Figure 3 also suggests that bias reductions in the
lower troposphere were dominated by the reduction of the positive bias in the polluted
areas of Fig. 1. Those results suggest that the following model errors (as opposed to
initial/boundary conditions errors) caused the biases: (i) the near surface biases were
likely caused by the CO emissions being too high in polluted areas and too low in non-5

polluted areas, (ii) the positive biases in the lower mid-troposphere (∼600 hPa) were
likely caused by erroneously large vertical CO fluxes from the near surface to the lower
mid-troposphere and/or too little CO destruction, and (iii) the negative biases in the
upper troposphere were likely caused by erroneously small vertical CO fluxes and/or
too much CO destruction.10

Lastly, we tested the null hypothesis that the difference between the MET DA and
MOP QOR time series results was zero (H0: MOP QOR − MET DA = 0) against an
alternative hypothesis that the difference was not zero (HA: MOP QOR − MET DA 6=
0). We used the retrieval space time series from Fig. 2 and the large sample parametric
test for the difference between two means from a normal distribution. We were able to15

reject the null hypothesis at the 95 % confidence level. Based on that result we conclude
that assimilation of MOPITT CO retrievals significantly changed the WRF-Chem/DART
CO forecasts and analyses. When measured against MOPITT, those changes were a
significant improvement.

7.2 Assimilation of compact phase space retrievals (CPSRs)20

Next we study the assimilation of CPSRs as described in Sect. 2 but first review some
CPSR attributes. Figure 4a shows vertical profiles of CPSR characteristics averaged for
the MOPITT retrieval domain at 18:00 UTC, 28 June 2008. The blue curves represent
the MOPITT CO retrievals (MOP-Ret). Those curves have reduced vertical structure
due to the units (log10(VMR) as opposed to VMR). After conversion from log10(VMR)25

to VMR, MOP-Ret has greater vertical structure and resembles the MOPITT profiles
in Fig. 3. The black curves represent the MOPITT CO QORs (MOP-QOR) as defined
by Eq. (3). MOP-QOR differs from MOP-Ret in that it has maxima near the surface
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and upper troposphere and a minimum in the middle troposphere. The green curves
represent the truncated profiles which are obtained by: (i) projecting the full retrieval
profile or the QOR profile onto the leading left singular vectors of the associated aver-
aging kernel to get the projection coefficients (e.g., cr = UT

0yr where cr is the projection
coefficient vector for the full retrieval and cqor = UT

0(yr − (I−A)ya −ε) = UT
0yqor, where5

cqor is the coefficient vector for the QOR profile – see Eq. (4) in Sect. 2), and (ii)
performing the inverse projection by multiplying the leading singular vectors by their
respective projection coefficients and summing those dot-products (e.g., ŷr = crU0 is
the truncated retrieval profile – denoted MOP-Trc and ŷqor = cqorU0 is the truncated
QOR profile – denoted QOR-Trc). The forward transform in (i) is analogous to the first10

part of the CPSR transform in Eq. (4). The inverse transform in (ii) brings the result of
forward transform in (i) back to state space. The inverse transform is not part of the
CPSR algorithm.

In Fig. 4a the residuals are defined as the difference between the full and truncated
profiles (e.g., yr−ŷr is the full retrieval residual – denoted MOP-Res and yqor−ŷqor is the15

QOR residual – denoted QOR-Res). If the full profiles project completely onto the lead-
ing singular vectors, the residuals are zero. The upper panel of Fig. 4a shows that the
transform in (i) has the greatest impact near the surface and the upper troposphere and
the least impact in the middle troposphere. When the truncation residuals are nonzero,
the original profiles contain components that are not in the range of the averaging ker-20

nel. That can also indicate a contribution from the retrieval prior term ((A− I)ya but not
always. When components of the retrieval prior term lie in the range of the averaging
kernel, they cannot be removed by the transform in (i) and are therefore not included in
the residual. For example in the upper panel of Fig. 4a the similarity between MOP-Trc
and QOR-Ret shows that the MOPITT retrieval was strongly influenced by the retrieval25

prior and that most of the prior contribution was removed by the transform in (i). That
also shows that most of the prior contribution was not in the range of the averaging ker-
nel. However not all was outside the range, and the difference between MOP-Trc and
QOR-Ret shows that most was inside the range. This analysis shows that the influence
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of the retrieval prior term cannot be completely removed by projecting the retrieval onto
the range of the averaging kernel. The results show that it is necessary to use the
Migliorini et al. (2008) quasi-optimal subtraction in Eq. (2) to remove the retrieval prior
contribution. Comparison of QOR-Ret and QOR-Trc in the lower panel of Fig. 4a shows
that QOR-Ret lies completely within the range of the averaging kernel. That result was5

expected from the discussion of Eqs. (3) and (4).
In summary Fig. 4a shows the state space impacts from applying the Migliorini et

al. (2008) quasi-optimal subtraction and the CPSR transform in (i). It also shows that
the quasi-optimal subtraction was necessary to remove the influence of the retrieval
prior. Thus in CPSRs the quasi-optimal subtraction removes the influence of the re-10

trieval prior and projection onto the leading singular vectors of the averaging kernel
provides the data compression.

In Fig. 4a the average number of leading singular vectors was ∼2.3. CPSRs reduced
the number of observations by ∼7.7 per MOPITT profile. After thinning there were
∼30 000 MOPITT profiles per assimilation cycle. That implies a CPSR reduction of15

∼281 000 retrievals or ∼80 % per cycle. On application the actual reduction was less
because the number of non-retrieval observations was not reduced. As an example
when assimilating MET OBS and CHEM OBS we found a reduction of ∼35 % in the
computation cost. That is a wall clock time reduction based on NCAR’s 1.5-petaflop
high-performance IBM Yellowstone computer with 32 tasks, and 8 tasks per node. We20

expect similar reductions for other computing configurations.
In Fig. 4b we examine the vertical structure of the CPSRs. The upper panel shows

the retrieval domain average of the MOPITT averaging kernel profiles from 18:00 UTC,
28 June 2008. The lower panel shows the domain average of the leading left singular
vectors from SVDs of the averaging kernel profiles in the upper panel. Comparison of25

the upper and lower panels shows that while the singular vector and averaging kernel
profiles are similar it is not possible to associate a specific singular vector profile with a
specific averaging kernel profile or with a group of profiles. However like the averaging
kernel of singular vectors show the sensitivity of the associated CPSR to the true CO
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profile. The first singular vector shows positive sensitivity to the entire CO profile with
greater sensitivity in the lower and middle troposphere and greatest sensitivity in the
upper middle troposphere. The second singular vector shows positive sensitivity in
the lower troposphere and negative sensitivity in the upper troposphere. Lastly the
third singular vector resembles the first singular vector with greatest positive sensitivity5

in the upper middle troposphere but with negative sensitivity in the lower and upper
troposphere. Those characteristics are consistent with the MOPITT TIR and NIR joint
sensitivities documented by Worden et al. (2010) and Deeter et al. (2011, 2012, and
2013). It should be noted that the sign of the singular vectors in the Fig. 4b is arbitrary
because the left and right singular vectors can be jointly multiplied by negative one and10

still qualify as a singular vectors. In Fig. 4b we chose the sign that made the singular
vector profile most consistent with the averaging kernel profiles.

To test the benefit of assimilating CPSRs we converted the MOPITT CO retrievals to
CPSRs and repeated the MOP QOR experiment (called MOP CPSR). Those results
are shown in Figs. 5–7. Conceptually the MOP CPSR results should be similar to the15

MOP QOR results in Figs. 1–3. Practically, the results are different due to: (i) the ef-
fect of DA sub-processes like horizontal localization and inflation, and (ii) differences
in the observation error caused by the CPSR compression transform. Comparison of
the contour maps in Figs. 1a and 5a shows that MOP CPSR provided similar adjust-
ments to MOP QOR but they were of greater magnitude and larger area (the MET DA20

result was not plotted in Fig. 5a because it would be the same as in Fig. 1a). The gen-
eral trend from Fig. 1a that the assimilation of CO retrievals reduced the positive CO
bias in polluted areas and the negative bias in nonpolluted areas appears in Fig. 5a.
Comparison of Figs. 1b and 5b shows that MOP CPSR generally assimilated the same
CO retrievals as MOP QOR, but the CPSR increments were of greater magnitude and25

more widely dispersed. Comparison of the time series plots in Figs. 2 and 6 shows
that there were slightly greater bias reductions for MOP CPSR than MOP QOR. MOP
CPSR reduced the CO negative bias in retrieval space by ∼8 ppb and increased the
mean CO in state space by ∼10 ppb. Those improvements are also seen from a com-

7709

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/7693/2015/gmdd-8-7693-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/7693/2015/gmdd-8-7693-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 7693–7725, 2015

Assimilating compact
phase space
retrievals of
atmospheric
composition

A. P. Mizzi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

parison of the vertical profiles in Figs. 3 and 7, which shows that MOP CPSR produced
greater bias reductions for the forecast and analysis throughout the troposphere. As in
MOP QOR the MOP CPSR improvements were greater in the upper troposphere than
in the lower troposphere. The MOP CPSR results from Fig. 7 provide further support
for our suggestion that the domain average bias reductions in Figs. 2 and 6 were due5

to bias reductions in the upper troposphere because the greater bias reductions in the
upper troposphere of Fig. 7 (compared to Fig. 3) provided greater bias reductions in
Fig. 6 (compared to Fig. 2). In summary Figs. 5–7 confirm our analysis of Figs. 1–3 and
show that assimilation of CPSRs produced results that were similar to or better than
those from the assimilation of QORs at two-thirds the computational cost. We also con-10

ducted significance testing for MOP CPSR similar to that for MOP QOR and were able
to reject the null hypothesis that there was no difference between the MOP CPSR and
MET DA time series in Fig. 6.

7.3 Verification against MOPITT retrievals

We calculated verification statistics (bias, root mean square error (RMSE), and Coeffi-15

cient of Determination (R2)) for the 6 h forecasts from all experiments based on the time
series results in Figs. 2 and 6. Those statistics are plotted in Fig. 8. Generally Fig. 8
shows that the assimilation of MOPITT CO improved model performance for all met-
rics when compared against the MOPITT retrievals. Figure 8 also shows that RMSE
was dominated by the bias and that the differences in the statistics for the different20

treatments (assimilating QORs, CPSRs, cross-covariance zeroing, and vertical local-
ization) were generally negligible except for cross-covariance zeroing. We now discuss
the cross-covariance zeroing and vertical localization experiments.
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7.4 Observation error covariance diagonalization through zeroing of the
cross-correlations

One method used to diagonalize the observation error covariance is zeroing of the
cross-correlations (Migliorini et al., 2008). The uncertainty of the error covariance and
the practice of adjusting the observation error variance to tune ensemble DA strategies5

are used to justify the zeroing. As noted by Anderson (2001) and applied by Miglior-
ini et al. (2008), a more aesthetic and mathematically correct approach is to apply
a variance maximizing rotation based on a SVD of the error covariance. In this sec-
tion we compare those two error covariance diagonalization methods. Recall that MOP
QOR used an SVD-based rotation to diagonalize the error covariance. We conducted10

a companion experiment MOP NROT where we used cross-correlation zeroing. The
assimilation/forecast plots are not shown because it is not a central theme of this pa-
per. However, we include the verification statistics in Fig. 8. Significance testing and
scores from assimilation of MOPITT CO show that SVD-based diagonalization pro-
duced significantly greater forecast skill compared to cross-correlation zeroing. Based15

on that result we conclude that the second SVD-based rotation is a necessary step in
our definition of CPSRs.

7.5 Vertical localization and phase space retrievals

Ensemble data assimilation generally uses localization to remove spurious correlations
that may occur from under-sampling. Localization limits the horizontal and vertical spa-20

tial scales on which the observations impact the posterior. Vertical localization may be
inappropriate when assimilating phase space retrievals because ∼80 % of the vertical
variation in the retrieval is described by the first leading singular vector of the averaging
kernel (the basis function for the phase space transform) and that vector is nearly inde-
pendent of height (see Fig. 4b). Nevertheless if vertical localization is appropriate then25

the question becomes “how to do it” because phase space retrievals are not associated
with a unique vertical location. One solution assumes that phase space retrievals are
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associated with the level of maximum sensitivity in the transformed averaging kernel.
We applied such localization to MOP QOR (in the MOP LOC experiment) and found
that results from the two experiments were similar. Therefore we do not present the
assimilation/forecast plots but include the verification statistics in Fig. 8. Comparison
of the verification scores in Fig. 8 for MOP LOC with those from the other experiments5

(MOP QOR and MOP CPSR) shows that vertical localization did not substantially al-
ter the results. We experimented with different vertical localization lengths and found
similar results. We are unsure whether this is a general result and are continuing to
investigate vertical localization.

8 Summary and conclusions10

In this paper we incorporated WRF-Chem into DART and assimilated MOPITT CO
trace gas retrievals. We also introduced the assimilation of “compact phase space
retrievals” (CPSRs). CPSRs are preprocessed trace gas retrievals that have: (i) the
influence of the retrieval prior removed, (ii) data compression, (iii) SVD-based error
covariance diagonalization, and (iv) unit error variance scaling. We showed that as-15

similation of CPSRs is an efficient alternative to assimilation of quasi-optimal retrievals
(QORs) that provided substantial reductions in computation time (∼35 %) without de-
grading the analysis fit or forecast skill.

We presented results from month-long (00:00 UTC, 1 June 2008 to 18:00 UTC, 31
June 2008) cycling experiments where we assimilated conventional meteorology and20

MOPITT CO retrievals. For MOP QOR the time series plots in Fig. 2 showed that MET
DA had a negative bias of ∼10 ppb. The assimilation of MOPITT CO in MOP QOR re-
duced that bias by ∼5 ppb. The vertical profile plots in Fig. 3 showed that assimilation of
MOPITT CO improved the CO analysis fit and forecast skill throughout the troposphere
when compared to MET DA. We also used traditional skill metrics (bias, RMSE, and25

R2) to quantify the impact of assimilating CO retrievals. Those results showed that bias
dominated the RMSE and that assimilation of CO retrievals improved WRF-Chem per-
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formance. Specifically, MOP QOR significantly improved the WRF-Chem CO forecast
skill for all three metrics.

Next we focused on making the assimilation of retrievals computationally efficient and
introduced “compact phase space retrievals.” CPSRs advance the work of Joiner and
DaSilva (1998) and Migliorini et al. (2008) by describing an easily applied methodology5

to achieve data compression for phase space retrievals. Conceptually, the assimilation
of QORs and CPSRs should yield similar results except for the effects of: (i) assimila-
tion sub-processes like localization and inflation and (ii) different observation errors due
to the CPSR compression transform. MOP CPSR maps in Fig. 5 showed that assimila-
tion of CPSRs placed CO hot spots in the same locations as MOP QOR but they were10

of greater magnitude and larger area. The time series and vertical profile plots showed
that those differences generally represented analysis and forecast improvements. Skill
metrics for MOP CPSR showed that when compared to MOP QOR, the assimilation
of CPSRs slightly improved the forecast skill for all metrics, and when compared to
MET DA it significantly improved the forecast skill for all metrics. Based on those re-15

sults we conclude that the assimilation of CPSRs performed as well or better than the
assimilation of QORs at a substantially reduced computational cost (∼35 % reduction
in computation time).

Collectively our analysis of the MOP QOR and CPSR results in Figs. 1–3 and 5–7
suggested that: (i) in the lower troposphere MET DA had a negative CO bias in polluted20

areas and a positive bias in nonpolluted areas (Figs. 1 and 5) and (ii) bias reductions
in the domain average retrieval space CO were due to reductions in the negative CO
bias in the upper troposphere (Figs. 2, 3, 6, and 7). We proposed three causes for
the CO biases: (i) emission errors – overestimation of CO emissions in polluted areas
and underestimation in nonpolluted areas, (ii) transport errors – too much CO transport25

from the near surface to the lower troposphere and too little transport from the lower
to upper troposphere, and (iii) chemistry errors – too little CO destruction in the near
surface and lower troposphere and too much destruction in the upper troposphere.

7713

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/7693/2015/gmdd-8-7693-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/7693/2015/gmdd-8-7693-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 7693–7725, 2015

Assimilating compact
phase space
retrievals of
atmospheric
composition

A. P. Mizzi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

We expect that CPSRs have the potential for broad operational application. CPSRs
can be easily obtained from retrievals derived from any optimal estimation algorithm.
They can be used to assimilate retrievals with correlated or uncorrelated errors for
any sequential assimilation methodology (both Kalman filter and variational based al-
gorithms). Due to their ease of derivation, flexibility, and potential for large reductions5

in assimilation computation time, CPSRs should facilitate the efficient assimilation of
dense geostationary observations.

Acknowledgements. NCAR is sponsored by the National Science Foundation (NSF). Any opin-
ions, findings and conclusions or recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of NSF. This research was also sponsored10

by NASA grants NNX11A110G and NNX10AH45G. We gratefully acknowledge Louisa Em-
mons and Chris Snyder for their thorough reviews of this manuscript and for providing many
constructive comments. We also acknowledge Helen Worden for assistance with the MOPITT
data, and Jerome Barre for assistance with coding the WRF-Chem initial and boundary condi-
tion perturbations.15

References

Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather
Rev., 129, 2884–2903, 2001.

Anderson, J. L.: A local least squares framework for ensemble filtering, Mon. Weather Rev.,
131, 634–642, 2003.20

Anderson, J. L., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Arellano, A.: The Data
Assimilation Research Testbed: A community facility, B. Am. Meteor. Soc., 90, 1283–1296,
2009.

Bei, N., de Foy, B., Lei, W., Zavala, M., and Molina, L. T.: Using 3DVAR data assimilation system
to improve ozone simulations in the Mexico City basin, Atmos. Chem. Phys., 8, 7353–7366,25

doi:10.5194/acp-8-7353-2008, 2008.
Colarco, P., Da Silva, A., Chin, M., and Diehl, T.: Online simulation of global aerosol distributions

in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical
depth, J. Geophys. Res., 115, D14207, doi:10.1029/2009JD012820, 2010.

7714

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/7693/2015/gmdd-8-7693-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/7693/2015/gmdd-8-7693-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/acp-8-7353-2008
http://dx.doi.org/10.1029/2009JD012820


GMDD
8, 7693–7725, 2015

Assimilating compact
phase space
retrievals of
atmospheric
composition

A. P. Mizzi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Deeter, M. N.: MOPITT (Measurement of Pollution in the Troposphere) version 5 Product User’s
Guide, available at: www.acd.ucar.edu/mopitt/v5_users_guide_beta.pdf, 2011.

Deeter, M. N., Martinez, A. S., Edwards, D. P., Emmons, L. K., Gille, J. C., Worden, H. M.,
Pittman, J. V., Daube, B. C., and Wofsy, S. C.: Validation of MOPITT version 5 thermal-
infrared, near-infrared, and multispectral carbon monoxide profile retrievals for 2000–2011,5

J. Geophys. Res.-Atmos., 118, 6710–6725, 2013.
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier,

C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer,
C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone
and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67,10

doi:10.5194/gmd-3-43-2010, 2010.
Gaubert, B., Coman, A., Foret, G., Meleux, F., Ung, A., Rouil, L., Ionescu, A., Candau, Y., and

Beekmann, M.: Regional scale ozone data assimilation using an ensemble Kalman filter and
the CHIMERE chemical transport model, Geosci. Model Dev., 7, 283–302, doi:10.5194/gmd-
7-283-2014, 2014.15

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamrock, W. C., and Eder,
B.: Fully coupled ‘online’ chemistry in the WRF model, Atmos. Environ., 39, 6957–6976,
2005.

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K.,
and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.120

(MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci.
Model Dev., 5, 1471–1492, doi:10.5194/gmd-5-1471-2012, 2012.

Herron-Thorpe, F. L., Mount, G. H., Emmons, L. K., Lamb, B. K., Chung, S. H., and Vaughan, J.
K.: Regional air-quality forecasting for the Pacific Northwest using MOPITT/TERRA assimi-
lated carbon monoxide MOZART-4 forecasts as a near real-time boundary condition, Atmos.25

Chem. Phys., 12, 5603–5615, doi:10.5194/acp-12-5603-2012, 2012.
Joiner J. and Da Silva, A. B.: Efficient methods to assimilate remotely sensed data based on

information content, Q. J. Roy. Meteorol. Soc., 124, 1669–1694, 1998.
Kukkonen, J., Olsson, T., Schultz, D. M., Baklanov, A., Klein, T., Miranda, A. I., Monteiro, A.,

Hirtl, M., Tarvainen, V., Boy, M., Peuch, V.-H., Poupkou, A., Kioutsioukis, I., Finardi, S., Sofiev,30

M., Sokhi, R., Lehtinen, K. E. J., Karatzas, K., San José, R., Astitha, M., Kallos, G., Schaap,
M., Reimer, E., Jakobs, H., and Eben, K.: A review of operational, regional-scale, chemical

7715

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/7693/2015/gmdd-8-7693-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/7693/2015/gmdd-8-7693-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
www.acd.ucar.edu/mopitt/v5_users_guide_beta.pdf
http://dx.doi.org/10.5194/gmd-3-43-2010
http://dx.doi.org/10.5194/gmd-7-283-2014
http://dx.doi.org/10.5194/gmd-7-283-2014
http://dx.doi.org/10.5194/gmd-7-283-2014
http://dx.doi.org/10.5194/gmd-5-1471-2012
http://dx.doi.org/10.5194/acp-12-5603-2012


GMDD
8, 7693–7725, 2015

Assimilating compact
phase space
retrievals of
atmospheric
composition

A. P. Mizzi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

weather forecasting models in Europe, Atmos. Chem. Phys., 12, 1–87, doi:10.5194/acp-12-
1-2012, 2012.

MACC-II Final Report: Monitoring Atmospheric Composition and Climate – Interim
Implementation, available at: https://www.wmo.int/pages/prog/arep/gaw/documents/
GAW-2013-Peuch-MACCII.pdf, October 2014.5

Migliorini, S., Piccolo, C., and Rodgers, C. D.: Use of the information content in satellite mea-
surements for an efficient interface to data assimilation, Mon. Weather Rev., 136, 2633–2650,
2008.

Pagowski, M. and Grell, G. A.: Experiments with the assimilation of fine aerosols using an
ensemble Kalman filter, J. Geophys. Res., 117, D21302, doi:10.1029/2012JD018333, 2012.10

Pfister, G. G., Avise, J., Wiedinmyer, C., Edwards, D. P., Emmons, L. K., Diskin, G. D., Podolske,
J., and Wisthaler, A.: CO source contribution analysis for California during ARCTAS-CARB,
Atmos. Chem. Phys., 11, 7515–7532, doi:10.5194/acp-11-7515-2011, 2011.

Pfister, G. G., Walters, S., Emmons, L. K., Edwards, D. P., and Avise, J.: Quantifying the con-
tribution of inflow on surface ozone over California during summer 2008, J. Geophys. Res.15

Atmos., 118, 12282–12299, doi:10.1002/2013JD020336, 2013.
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, Theory and Practice, World Sci.,

Singapore, 2000.
Smith, W. L. and Woolf, H.: The use of eigenvectors of statistical covariance matrices for inter-

preting satellite sounding radiometer observations, J. Atmos. Sci., 33, 1–7, 1976.20

Thompson, O.: Regularizing the satellite temperature-retrieval problem through singular-value
decomposition of the radiative transfer physics, Mon. Weather Rev., 120 2314–2328, 1992.

Twomey, S.: Information content in remote sensing, Appl. Opt., 13, 942–945, 1974.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and

Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate25

the emissions from open burning, Geosci. Model Dev., 4, 625–641, doi:10.5194/gmd-4-625-
2011, 2011.

7716

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/7693/2015/gmdd-8-7693-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/7693/2015/gmdd-8-7693-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/acp-12-1-2012
http://dx.doi.org/10.5194/acp-12-1-2012
http://dx.doi.org/10.5194/acp-12-1-2012
https://www.wmo.int/pages/prog/arep/gaw/documents/GAW-2013-Peuch-MACCII.pdf
https://www.wmo.int/pages/prog/arep/gaw/documents/GAW-2013-Peuch-MACCII.pdf
https://www.wmo.int/pages/prog/arep/gaw/documents/GAW-2013-Peuch-MACCII.pdf
http://dx.doi.org/10.1029/2012JD018333
http://dx.doi.org/10.5194/acp-11-7515-2011
http://dx.doi.org/10.1002/2013JD020336
http://dx.doi.org/10.5194/gmd-4-625-2011
http://dx.doi.org/10.5194/gmd-4-625-2011
http://dx.doi.org/10.5194/gmd-4-625-2011


GMDD
8, 7693–7725, 2015

Assimilating compact
phase space
retrievals of
atmospheric
composition

A. P. Mizzi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. Summary of the WRF-Chem/DART Forecast/Data Assimilation Experiments.

Experiment Assimilate Assimilate Assimilate Use error Use
meteorology MOPITT MOPITT covariance vertical
observations CO QORs CO CPSRs zeroing localization

MET DA Yes No No No No
MOP QOR Yes Yes No No No
MOP CPSR Yes No Yes No No
MOP NROT Yes Yes No Yes No
MOP LOC Yes Yes No No Yes
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Figure 1. (a) Shaded contours of CO in ppb for the MOP QOR (upper panel) and MET DA
(middle panel) experiments for the first model level above the surface (∼1000 hPa) from the
6 h forecast valid on 18:00 UTC, 28 June 2008. The lower panel shows the difference contours
for those experiments (MOP QOR – MET DA). The shaded area represents the WRF-Chem.
(b) The upper panel shows the assimilated MOPITT CO retrievals between the surface and
900 hPa for 18:00 UTC, 28 June 2008. The lower panel shows the associated assimilation in-
crement.
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Figure 2. Time series of domain average CO from the MOP QOR and MET DA experiments.
The red and magenta dots show the MOP QOR and MET DA analyses (A) in retrieval space,
and the blue and black dots show the respective forecasts (F) in retrieval space. The green dots
represent the MOPITT retrievals. The lines represent the results in state space.
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Figure 3. Vertical profiles of time/horizontal domain average CO from the MOP QOR and MET
DA experiments for 00:00 UTC, 25–29 June 2008. The results are in MOPTT retrieval space.
The red profiles represent the MOPITT retrievals. Otherwise the color of the lines corresponds
to the legend. “Forecast” is the assimilation prior, and “Analysis” is the assimilation posterior.
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Figure 4. (a) Horizontal domain average of the full and truncated terms in the retrieval equa-
tion for 18:00 UTC, 28 June 2008. MOP-Ret, MOP-Trc, and MOP-Res are the MOPITT re-
trieval, truncated retrieval, and residual profiles respectively. QOR-Ret is the MOPITT QOR
profile, QOR-Trc is the truncated MOPITT QOR profile, and QOR-Res is the MOPITT QOR
residual profile. (b) Horizontal domain average of the MOPITT averaging kernel profiles in the
upper panel and leading left singular vectors of those averaging kernels in the lower panel for
18:00 UTC, 28 June 2008.
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Figure 5. (a) Same as Fig. 1a except for the MOP CPSR experiment and the middle panel from
Fig. 1a, the MET DA experiment is not plotted. (b) Same as Fig. 1b except for the MOP CPSR
experiment.
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Figure 6. Same as Fig. 2 except for the MOP CPSR experiment.
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Figure 7. Same as Fig. 3 except for the MOP CPSR experiment.
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Figure 8. Verification statistics for all experiments in MOPITT retrieval space. The blue curve is
the bias (model – observation). The red curve is the root mean square error (RMSE), and the
magenta curve is the Coefficient of Determination. The experiments are described in the text
and summarized in Table 1.
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